
Proof Certification in Zenon Modulo: When
Achilles Uses Deduction Modulo to Outrun

the Tortoise with Shorter Steps∗

David Delahaye1, Damien Doligez2, Frédéric Gilbert2,
Pierre Halmagrand1 and Olivier Hermant3

1 Cedric/Cnam/Inria, Paris, France,
David.Delahaye@cnam.fr

Pierre.Halmagrand@inria.fr
2 Inria, Paris, France,

Damien.Doligez@inria.fr
Frederic.Charles.Gilbert@inria.fr

3 CRI, MINES ParisTech, Fontainebleau, France,
Olivier.Hermant@mines-paristech.fr

Abstract
We present the certifying part of the Zenon Modulo automated theorem prover, which is

an extension of the Zenon tableau-based first order automated theorem prover to deduction
modulo. The theory of deduction modulo is an extension of predicate calculus, which
allows us to rewrite terms as well as propositions, and which is well suited for proof search
in axiomatic theories, as it turns axioms into rewrite rules. In addition, deduction modulo
allows Zenon Modulo to compress proofs by making computations implicit in proofs. To
certify these proofs, we use Dedukti, an external proof checker for the λΠ-calculus modulo,
which can deal natively with proofs in deduction modulo. To assess our approach, we rely
on some experimental results obtained on the benchmarks provided by the TPTP library.

1 Introduction
When dealing with automated theorem provers, the critical point is to ensure the soundness
of the corresponding implementation: completeness is a minor concern and is often dismissed
in favor of some strategies that focus efficiently on some categories of problems. To do so, two
options can be considered: either formally proving the soundness of the implemented proof
search method, or requiring the implementation to produce proof certificates, which can be
checked to reach an appropriate degree of confidence.

The first option is clearly a difficult task, even though successful experiments have been
carried out in this domain, in particular for SAT solving algorithms. This task is difficult be-
cause the tools used to formalize the soundness of algorithms provide constrained environments
(frequently, functions must be total and must terminate), where it is arduous to encode the
given algorithm that needs to be certified. In addition, it should be noted that the more so-
phisticated the algorithm is, the more difficult the soundness proof will be. As a consequence,
the soundness proofs are generally made over variants of the initial algorithm, which may be
far from the actual code, omitting the most error-prone parts of the algorithm.

The second option alleviates some of the difficulties inherent to the previous option, as
it imposes no constraint over the proof search algorithm, which can be as clever as needed.
∗This work is supported by the BWare project [7] (ANR-12-INSE-0010) funded by the INS programme of the

French National Research Agency (ANR).

1



Proof Certification and Compression in Zenon Modulo Delahaye, Doligez, Gilbert, Halmagrand, and Hermant

However, we must prove the soundness for each result produced by the algorithm, which must
therefore provide enough information to build these soundness proofs. This information is
generally called proof certificate, and it has become fashionable these days that certifying
automated theorem provers satisfy the De Bruijn criterion (formulated by Barendregt in [1]), i.e.
they generate proof certificates (or even directly proofs) in a format that can be independently
checked by external proof tools. In addition, proof certificates must be of good quality and
some principles tend to emerge in this domain. One of them is the Poincaré principle (also
formulated by Barendregt in [1]), which is directly related to the size of proofs and which states
that traces of computation should not be included in proof certificates. In this case, the external
proof checker is expected to redo computations and must be therefore adapted.

In this paper, we present the certifying part of the Zenon Modulo automated theorem
prover [5], which is an extension of the Zenon tableau-based first order automated theorem
prover [3] to deduction modulo. The theory of deduction modulo is an extension of predicate
calculus, which allows us to rewrite terms as well as propositions, and which is well suited
for proof search in axiomatic theories, as it turns axioms into rewrite rules. This way, we
turn proof search among the axioms into computations, avoiding unnecessary blowups, and we
shrink the size of proofs by recording only their meaningful steps (see [4]). Zenon Modulo, just
like Zenon, adopts a certifying approach, and is able to produce proofs to be checked by an
external proof tool (in this sense, Zenon Modulo satisfies the De Bruijn criterion). In addition,
deduction modulo allows Zenon Modulo to compress proofs by producing proofs with no trace of
computation (in this sense, Zenon Modulo verifies the Poincaré principle). However, the external
proof checker must be able to deal with these proofs in deduction modulo. For that purpose,
we use Dedukti [2], which is a proof checker based on the λΠ-calculus modulo.

This paper is organized as follows: in Sec. 2, we present the proof generation of Zenon Modulo,
and particularly focus on the proof compression aspect (compared to Zenon); in Sec. 3, we
describe the proof verification of Zenon Modulo using Dedukti; for both sections, we rely on some
experimental results obtained on the benchmarks provided by the TPTP library [6].

2 Proof Compression in Zenon Modulo

In order to validate our implementation of Zenon Modulo, we compare proofs found by both
Zenon and Zenon Modulo where rewriting is used at least once in the latter (otherwise, proofs are
identical). This leads us to examine a subset of 624 first order problems (FOF category) of the
TPTP library (v5.5.0) out of the 1,446 problems proved by both Zenon and Zenon Modulo.

We compare the number of nodes of the resulting proof trees after pruning of the useless
formulas (pruning is a technique that allows us to minimize the size of the proof search tree by
determining the useful formulas to close the tree; see [3] for more information). The average
proof size reduction obtained by Zenon Modulo over the 624 FOF problems is 6.8% (with a
maximum of 91.4%). Over the 110 problems from the SET category (problems of set theory),
the average proof size reduction reaches 21.6% (with a maximum of 84.6%). In Fig. 1, we
present the average proof size reduction depending on the size of the initial proofs in Zenon.
We cluster the proofs of Zenon in 10 deciles and compute the associated average proof size
reductions. The results for the first decile (i.e. the smallest Zenon proofs, between 1 and 3 proof
nodes for FOF and between 1 to 6 proof nodes for SET) are negative: about -42% for FOF
and -65% for SET. These results are not shown in Fig. 1, since it is of dubious interest to turn
small proofs into bigger yet still small proofs. We observe a positive correlation between the
average proof size reduction and the size of Zenon proofs, i.e. the bigger Zenon proofs are, the
higher the average proof size reduction is. We obtain the highest reduction for the last decile

2



Proof Certification and Compression in Zenon Modulo Delahaye, Doligez, Gilbert, Halmagrand, and Hermant

 0

 10

 20

 30

 40

 50

 60

[3-6]/[7-10]

[6-8]/[10-13]

[8-11]/[13-18]

[11-16]/[18-22]

[16-21]/[22-27]

[21-28]/[27-31]

[29-38]/[31-34]

[39-68]/[36-53]

[70-3474]/[54-132]

A
ve

ra
ge

 R
ed

uc
tio

n 
w

ith
 Z

en
on

 M
od

ul
o 

(P
er

ce
nt

)

Zenon Proof Size ([Min-Max] Proof Nodes FOF/SET)

FOF
SET

Figure 1: Proof Compression in Zenon Modulo over the FOF and SET Categories

(i.e. the biggest Zenon proofs, between 70 and 3,474 proof nodes in FOF and between 54 and
132 proof nodes in SET): about 25% for FOF and 45% for SET.

To illustrate the proof compression in Zenon Modulo, we present, in Fig. 2, the proofs found
by Zenon and Zenon Modulo for the problem SET705+4, which states that every set is included
in its powerset, i.e. ∀A A ∈ P(A). The axioms used to complete this proof are the following:

∀X,A (X ∈ P(A) ⇔ X ⊆ A) (powerset)
∀A,B (A ⊆ B ⇔ ∀X (X ∈ A⇒ X ∈ B)) (subset)

Zenon uses the powerset axiom as an hypothesis and the subset axiom as a definition, called
by the p-unfold¬ rule. In contrast, Zenon Modulo transforms these two axioms into propositional
rewrite rules as follows:

X ∈ P(A) −→ X ⊆ A (powerset)
A ⊆ B −→ ∀X (X ∈ A⇒ X ∈ B) (subset)

We observe a reduction of 55% of proof nodes in Zenon Modulo. The resulting proof tree is
also much simpler since there is no branch creation.

3 Proof Verification with Dedukti

Integrating some rewriting capabilities on top of the two existing outputs of Zenon for Coq and
Isabelle would lose compression of Sec. 2 by providing all the rewrite steps. We chose instead to
use a proof checker with rewriting capabilities: Dedukti, based on the λΠ-calculus modulo.

3



Proof Certification and Compression in Zenon Modulo Delahaye, Doligez, Gilbert, Halmagrand, and Hermant

Proof in Zenon:

¬(∀A (A ∈ P(A))), ∀X,A (X ∈ P(A)⇔ X ⊆ A)
δ¬∀¬(τ1 ∈ P(τ1))

γ∀inst
∀A (τ1 ∈ P(A)⇔ τ1 ⊆ A)

γ∀inst
τ1 ∈ P(τ1)⇔ τ1 ⊆ τ1

β⇔¬(τ1 ⊆ τ1)
p-unfold¬¬(∀X (X ∈ τ1 ⇒ X ∈ τ1)
δ¬∀¬(τ2 ∈ τ1 ⇒ τ2 ∈ τ1)

α¬⇒
¬(τ2 ∈ τ1), τ2 ∈ τ1 ��

τ1 ∈ P(τ1)
��

Proof in Zenon Modulo:

¬(∀A (A ∈ P(A)))
?

¬(∀X (X ∈ τ1 ⇒ X ∈ τ1)
δ¬∀¬(τ2 ∈ τ1 ⇒ τ2 ∈ τ1)

α¬⇒
¬(τ2 ∈ τ1), τ2 ∈ τ1 ��

where:
τ1 = ε(A).¬(A ∈ P(A))
τ2 = ε(X).¬(X ∈ τ1 ⇒ X ∈ τ1)

and:
? = δ¬∀, powerset, subset

Figure 2: Proofs of Problem SET705+4 in Zenon and Zenon Modulo

As the target logic is constructive, a translation from classical logic must be therefore im-
plemented. Since Dedukti offers many facilities to define shallow embeddings (thanks to rewrite
rules), we opted for a double-negation translation rather than for a non-computational axiom-
atization. Introducing double-negations at each place à la Kolmogorov [8] is a linear solution
with respect to proof size, but appeared impracticable. This is why we forged a translation
that introduces as few double-negation as possible, improving over previously existing work by
Gödel, Gentzen, and Kuroda [8]. Moreover, we treat differently the formulas along the side
of the sequent they appear, following the remark that left-rules are identical in classical and
intuitionistic sequent calculi. Combined with the use of rewrite rules, this has an important
impact on the size of the generated certificates, and on the time it takes to check them.

As shown in Tab. 1, this approach is currently able to check with success about 90% of the
proofs found by Zenon Modulo, and no certificate has been explicitly rejected. As for failures,
there are two main reasons for which some proofs fail to be checked properly. The first one
(see the column “Dedukti Failure”) is that Dedukti itself does not succeed to check its input.
This is mainly due to the produced rewrite system, which is ill-formed according to Dedukti.
In particular, this is the case when the rewrite system is non-terminating or contain some
non-linear rules (Dedukti may also fail in presence of non-confluent rewrite systems). Since the
heuristic that transforms automatically axioms into rewrite rules used by Zenon Modulo does
not perform any verification over the produced rewrite system, we can imagine to reduce the
proportion of these cases of Dedukti failure by carrying out a (mainly syntactical) study of the
rewrite system (possibly using some dedicated external tools) before calling Dedukti.

The second reason of failures (see the column “Backend Issue”) is that the backend fails to
produce a result (timeout or memory overflow) due to internal inefficiencies. By making the
translation depend of the side of the sequent where the formula appears, we lose modularity.
In other words, the cut rule is not “directly” admissible. Unfortunately, cuts are introduced by
Zenon Modulo during proof search and proof optimization, before the intervention of the backend.
To treat them, we have to eliminate them “by hand” up to a point where both left and right
translations become equal. This step has not been optimized yet, and may take exponential
time and size. Even worse, in deduction modulo, this process may loop whatever the reduction
strategy. Another increase in the complexity of the translation is introduced by the analysis of
the proof tree as a whole to decide whether the double-negation introduced by the translation of

4



Proof Certification and Compression in Zenon Modulo Delahaye, Doligez, Gilbert, Halmagrand, and Hermant

FOF (624 problems) Dedukti Success Dedukti Failure Backend Issue
Problems 559 5 60

Rate 89.6% 0.8% 9.6%

Table 1: Proof Verification with Dedukti over a Subset of the FOF Category

formulas is necessary: in fact, a double negation corresponds to the use of the excluded-middle
principle, and many classical proofs do not rely on this.

4 Conclusion

We have described the certifying part of the Zenon Modulo automated theorem prover, which is an
extension of the Zenon tableau-based first order automated theorem prover to deduction modulo.
Thanks to deduction modulo, Zenon Modulo turns axioms into rewrite rules and is therefore able
to produce smaller proofs (compared to Zenon) with no trace of computation. However, the
external proof checker used to certify these proofs must be adapted, and we use Dedukti, an
external proof checker based on the λΠ-calculus modulo, which can deal natively with proofs
in deduction modulo. To assess our approach, we have presented some experimental results
obtained on the benchmarks provided by the TPTP library. These results show an increasing
average proof size reduction with the size of the proof, while a large part of the proofs produced
by Zenon Modulo are verified by Dedukti. As future work, we plan to improve the Dedukti backend
by introducing more algorithmic optimizations, but an alternative solution could be to develop
a more “syntactical” backend and unplug some optimizations, in order to avoid dependency on
cut-elimination and proof inspection.

References
[1] H. Barendregt and E. Barendsen. Autarkic Computations in Formal Proofs. Journal of Automated

Reasoning (JAR), 28(3):321–336, Apr. 2002.
[2] M. Boespflug, Q. Carbonneaux, and O. Hermant. The λΠ-Calculus Modulo as a Universal Proof

Language. In Proof Exchange for Theorem Proving (PxTP), pages 28–43, Manchester (UK), June
2012.

[3] R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An Extensible Automated Theorem Prover Pro-
ducing Checkable Proofs. In Logic for Programming Artificial Intelligence and Reasoning (LPAR),
volume 4790 of LNCS/LNAI, pages 151–165, Yerevan (Armenia), Oct. 2007. Springer.

[4] G. Burel. Efficiently Simulating Higher-Order Arithmetic by a First-Order Theory Modulo. Logical
Methods in Computer Science (LMCS), 7(1):1–31, Mar. 2011.

[5] D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, and O. Hermant. Zenon Modulo: When Achilles
Outruns the Tortoise using Deduction Modulo. In Logic for Programming Artificial Intelligence and
Reasoning (LPAR), volume 8312 of LNCS/ARCoSS, pages 274–290, Stellenbosch (South Africa),
Dec. 2013. Springer.

[6] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts,
v3.5.0. Journal of Automated Reasoning (JAR), 43(4):337–362, Dec. 2009.

[7] The BWare Project, 2012. http://bware.lri.fr/.
[8] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction. Elsevier,

Amsterdam (The Netherlands), 1988. ISBN 0444705066.

5

http://bware.lri.fr/

	Introduction
	Proof Compression in Zenon Modulo
	Proof Verification with Dedukti
	Conclusion

